ECE 590 Final Project for Jan Fure
Introduction
My project involved adding a median filter as an enhancement of the Erik Lindsay image processor from ECE590 year 2012. The implementation was made using a median of median, with groups of 3, for the 9 pixels that forms the image processor 3x3 kernel. Wikipedia says using a median of median algorithm; one is guaranteed that the output is between the 30th and the 70th percentile. In the case of 9 bins, running a Monte Carlo simulation of 106 points, all the points were in bins 4,5 and 6, where the median is bin 5. Using the center of each bin as percentile, the median of median filter returns outputs that are in percentiles 39,50 and 61, with the majority the 50th percentile.
Median filter was implemented the following ways:
1. Data flow behavioral programming for the Lindsay image processor, implementation of median of median.
2. Structural design of a median of medians.
3. Structural design of a median filter using horizontal sort of 3x3 matrix, followed by vertical sort, followed by diagonal sort.
4. Structural design of conventional sorter without absorption.

A Comparison of the resources required for the various implementations was performed:
MedianOfMedian: Basic building block (median3) takes three 8 bit inputs, and outputs the median. Such a block needs 3 comparators and one 3:1 mux. The MedianOfMedian component uses 4 median3 blocks, thus 12 comparators and 4 3:1 MUXs.
The sort horizontal/vertical/diagonal uses 7 sort3 blocks. A sort3 block uses 3 comparators, and three 3:1 MUXs, thus the resources expended are 21 comparators and 21 3:1 MUXs.
The conventional sorter needs 9 sort operations for 100% probability the sort of 9 elements is finished. A one million run Monte Carlo simulation shows that for nine elements, there is a 0.8% chance that the middle output of the sort is not the true median. In general, for even number of elements, the sort will finish after N-1 sort stages, whereas an odd number requires N columns of staggered minmax elements with alternating even and odd sorts. The minmax element consists of one comparator and two 2:1 MUXs. Since each column consists of one buffer plus 4 minmax elements, then 9 sort steps adds up to 36 comparators, 72 2:1 MUXs and 9 buffers. I have not yet implemented in hardware, but it seems obvious that the propagation delay is also greater for the conventional sorter then the alternative implementations.
Comparison of architectures for median
	Architecture
	Conventional Sorter
	Median
	Median of Median

	Details
	Minmax units staggered
	Horizontal/vertical/diag
	3x3 median of median

	Comparators needed
	36
	21
	12

	MUXs needed
	72
	21
	4

	Relative delay
	9
	3
	2

	Drawbacks
	Resources and delay
	Resources
	Accuracy

Median of Median Implementations
(1) Integration into Liskay’s image processor:
Opcode 2A was added, which is a dataflow implementation of the median of median algorithm. Liskay’s code operates on 2D arrays of integers that are read from files on hard disk, and I cannot see a way to implement a structural element within the image processor.
(2) Structural description:
	VHDL Code
	medianofmedian3x3.vhd

	Uses component
	median3.vhd

	Testbench
	tb8.vhd

The component median3.vhd is effectively a partial implementation of sort3.vhd, requiring 3 comparators, and one 3:1 mux.
	VHDL Code
	median3.vhd

	Uses behavioral components
	nand3

	
	nand4

	
	nand5

	
	comp2in3out_gate

	
	mux3in1out

	Testbench
	tb2.vhd

Example of Median of Median for outlier removal in images
[image:]
Figure 1: Starting picture.
To test the effect on an image, a matlab function to add image noise was applied “J = imnoise(I,'salt & pepper',0.02);”, and the ability of the filter to remove the noise was tested.
[image:]
Figure 2: After median of median filter.

Discussions of the efficiency of the median of median algorithm for image processor applications.
The median of median algorithm will return the true median of 9 inputs in 58 percent of the cases, and in all other cases, an element from inputs 4 or 6 out the sorted list of items identical with the inputs. This was verified with a java program that populated a list of 9 random numbers, reproduced the hardware median of median algorithm, and compared with all 9 random numbers sorted. One million runs result in about 580,000 cases where the return is the true median, and 180,000 cases each where the number below and above the true median gets returned. In images of real objects, the pixel values are not random, often the correlation is high. For the sake of emulating image processing, the random distribution was skewed to increase the probability of duplicate values, with increased probability of duplicate pixel values within the 9 pixels, the probability of returning the true median increases, which is what we expect. With each pixel of the last eight having a 50% probability of being a duplicate of the first pixel, the probability of returning the true median is 88%.
The test illustrated in figures 1 and 2 show that the median of median algorithm will remove outliers, and has the same low pass filter effect as a true median filter.

References:
1. https://en.wikipedia.org/wiki/Median_of_medians
Java code for testing:
public class Control2 {
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		final int runs=1000000;
		Data9 myData = new Data9();
		for (int i=0;i<runs;i++){
			myData.reGen3(0.5);
			//System.out.println(myData.toString());
			//System.out.println(myData.sString());
			myData.MedOfMed();
		}
		myData.printStats();
	}
}
//Argument to reGen3 is probability that a pixel of the last 8 of 9 is a duplicate of the first pixel value.

True Median Implementation 1 (Manan’s method)
For 9 numbers, the median can be extracted using 7 sorters of 3 elements, for a 3x3 image kernel, this means sorting each row horizontally, the output of this sort gets sorted vertically, and lastly the diagonal that does not intersect the min and max gets sorted, and the median of this sort operation is the true median. From, Manan, 2011 (AKGEC Journal of Technology, January-June 2011, Vol. 2, No.1)
http://www.akgec.in/index.php/rad/akgec-journal-of-tech/2-uncategorised/165
http://www.akgec.in/journals/Jan-June11/V.%20(pp%2025-28)%20%20ABDUL%20Manan_%20Implementation%20of%20Image%20Processing%20Algorithm%20on%20FPGA_24.2.11%20%5B59%5D.doc
Link above is to online journal, and respective article. For convenience, this document is also downloaded to the folder named References.
	VHDL Code
	median/median9.vhd

	Uses component
	median/sort3.vhd

	Testbench
	median/tb8.vhd

Implementation of sort3.vhd
The sort3.vhd component uses 3 comparators to determine if each pair (a,b),(b,c) and (c,a) has first input larger than, smaller than or equal to the second input. For none of the inputs equal there are 6 permutations: abc, acb, bac, bca, cab and cba. There are 3 cases of 2 inputs equal: a=b, b=c and c=a. For each of these 3 cases, the third input can be either smaller or larger than the 2 equal ones, this gives another 3x2=6 states. Lastly, all 3 inputs could be equal, a=b=c, this is the 13th state. In my implementation, I chose to give preference to the smaller indexed input when 2 are equal, meaning a>b>c outputs max_out=a,median_out=b,min_out=c and the case a=b>c will have the same mux routing as the first case. This choice does not affect the final truth table or output, it only affects which mux combinations are active when two or more inputs are equal.
	In
	Comp
	Out
	Signal
	a>b>c
	a=b>c
	a>b=c
	a=b=c
	a>c>b
	a=c>b
	b>a>c
	b>a=c
	b>c>a
	b=c>a
	c>a>b
	c>a=b
	c>b>a

	a
	
	i1>i2
	C1A
	1
	0
	1
	0
	1
	1
	0
	0
	0
	0
	1
	0
	0

	b
	COMP1
	i2>i1
	C1B
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1

	
	
	i1=i2
	C1EQ
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0

	b
	
	i1>i2
	C2A
	1
	1
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	0

	c
	COMP2
	i2>i1
	C2B
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	1
	1
	1

	
	
	i1=i2
	C2EQ
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	c
	
	i1>i2
	C3A
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1

	a
	COMP3
	i2>i1
	C3B
	1
	1
	1
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0

	
	
	i1=i2
	C3EQ
	0
	0
	0
	1
	0
	1
	0
	1
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	sort3 output ports
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Max
	a
	a
	a
	a
	a
	a
	b
	b
	b
	b
	c
	c
	c

	
	
	
	Median
	b
	b
	b
	b
	c
	c
	a
	a
	c
	c
	a
	a
	b

	
	
	
	Min
	c
	c
	c
	c
	b
	b
	c
	c
	a
	a
	b
	b
	a

	
	
	
	State
	S1
	S2
	S3
	S4
	S5
	S6
	S7
	S8
	S9
	S10
	S11
	S12
	S13

The truth table is implemented in nand logic. Each state (S1 through S13) is detected by the nand of all high comparator outputs corresponding to the state, the corresponding signals (S1 through S13) are high for all but the detected state. The 3:1 MUXs have 3 control inputs controlling which of the 3 inputs are passed. This adds one port to the component, but greatly simplifies the logic. Now all the states where input “a” gets passed through mux are used as an input for a nand gate where high output controls the passing of “a”. The median3.vhd only uses the MUX for median, and is otherwise identical to sort3.vhd
	VHDL Code
	sort3.vhd

	Uses behavioral components
	nand3

	
	nand4

	
	nand5

	
	nand6

	
	comp2in3out_gate

	
	mux3in1out

	Testbench
	tb3.vhd

True Median Implementation 2 (Alternating even and odd sorts, bubble sorter)
For 9 inputs, the first 4 pairs of 2 inputs are connected to minmax units, the 9th input is connected to a buffer. For the next sort step, first input goes to buffer, the next 8 go into 4 minmax units. This takes 9 operations for 100% probability that sort is completed. Since 9 inputs is an odd number, sort steps are N=9. For 8 inputs, only N-1=7 sort steps would be needed.
	VHDL Code
	staggeredSortMedian9.vhd

	Uses component
	minmax.vhd

	Uses behavioral component
	buffer1.vhd

	Testbench
	tb6.vhd

	VHDL Code
	minmax.vhd

	Uses behavioral components
	mux2toOne

	
	comp2in3out_gate

	Testbench
	Tb5.vhd

Recommendations for further work in hardware image processing:

The image processor in the Liskay 2012 project
1. reads the image data from a file
2. conveniently divides it into chunks of data that can be processed in parallel
3. generates the image processor cores
4. loads the desired algorithm based on user selected opcode
5. processes the data
6. writes it to an output file.

This architecture is a great starting point for inspiration in creating a hardware image processor, but the whole architecture only allows the CASE statements in “Cell.vhd” to contain data flow statements, as they have to operate on inputs defined as arrays of integers, i.e.:
entity Cell is
 generic (
 IMAGE_CHANNELS : integer := 3 -- Channels: 3=RGBColor, 1=Grayscale
);
 port (
 clock : in std_logic;
 opcode : in std_logic_vector(7 downto 0);
 userInputA : in std_logic_vector(7 downto 0);
 userInputB : in std_logic_vector(7 downto 0);
 userKernel : in kernel;
 inputA : in pixel_array(2 downto 0,2 downto 0);
 inputB : in pixel_array(2 downto 0,2 downto 0);
 outputC : out pixel_array(2 downto 0,2 downto 0)
);
end Cell;
The code for adding to the blue intensity is:
when x"04" => -- ADDIB
 for y in 0 to 2 loop
 for x in 0 to 2 loop
 outputC(x,y)(0) <= inputA(x,y)(0);
 outputC(x,y)(1) <= inputA(x,y)(1);
 outputC(x,y)(2) <= inputA(x,y)(2) + userInputA;
 end loop;
 end loop;
I don’t know how to add a structural component for median to this code without totally rewriting the whole image processor, but if I could, the project would still not be synthesizable, as the image comes from a file.
My recommendation is taking the existing architecture as inspiration, probably the generate statements that creates arrays of image processors can be re used, but the project has to be started from scratch, and customized to a specific FPGA hardware architecture.
Using the Atlys board
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,836&Prod=ATLYS
($230)
There are 2 convenient way to source image data:
1. Use onboard HDMI port. (cheapest)
2. Use stereo camera connected to onboard VMOD connector (could be used for robot 3d vision)
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,648,931&Prod=VMOD-CAM
($87 + $25 for cable)
In summary, I have added a median filter, that can be used for rejecting image noise, median of median is implemented both in dataflow and structural VHDL, additionally, in structural VHDL, I have implemented a bubble sorter, and also a true median sorter architecture for 9 elements, that sorts rows, then columns, lastly the cross diagonal. If a median of median is sufficient, then the number of comparators needed is 1/3 the number required for a bubble sorter for 9 elements. These are good building blocks for later image processing applications.
The document “Howto use VHDL image processor.docx” is a quick get started guide if anybody want to get the Liskay image processor running. It took me some effort, as the input file was missing from the prior project directory, so I had to reverse engineer the format. The directory “ImageProcessor” is ready to go in ModelSim student edition or QuestaSim.

Appendix A
Code added to data flow architecture “cell.vhd” from the Liskay project:
 -- INSERT MORE INSTRUCTIONS HERE!
					
 when x"2A" => --median per channel

 tempsignal_red(7 downto 0) := inputA(0,0)(0);
 tempsignal_green(7 downto 0) := inputA(0,0)(1);
 tempsignal_blue(7 downto 0) := inputA(0,0)(2);

 for x in 0 to 2 loop --red
 if (inputA(x,0)(0) <= inputA(x,1)(0)) and (inputA(x,1)(0) <= inputA(x,2)(0)) then
					temp_inputA(x,0)(0) := inputA(x,1)(0);
 elsif (inputA(x,2)(0) <= inputA(x,1)(0)) and (inputA(x,1)(0) <= inputA(x,0)(0)) then
					temp_inputA(x,0)(0) := inputA(x,1)(0);
					
				elsif (inputA(x,1)(0) <= inputA(x,0)(0)) and (inputA(x,0)(0) <= inputA(x,2)(0)) then
					temp_inputA(x,0)(0) := inputA(x,0)(0);
 elsif (inputA(x,2)(0) <= inputA(x,0)(0)) and (inputA(x,0)(0) <= inputA(x,1)(0)) then
					temp_inputA(x,0)(0) := inputA(x,0)(0);
					
				elsif (inputA(x,0)(0) <= inputA(x,2)(0)) and (inputA(x,2)(0) <= inputA(x,1)(0)) then
					temp_inputA(x,0)(0) := inputA(x,2)(0);
 elsif (inputA(x,1)(0) <= inputA(x,2)(0)) and (inputA(x,2)(0) <= inputA(x,0)(0)) then
					temp_inputA(x,0)(0) := inputA(x,2)(0);
				else
					temp_inputA(x,0)(0) := inputA(x,1)(0);
			 end if;
 end loop; -- x

 for x in 0 to 2 loop -- green
 if (inputA(x,0)(1) <= inputA(x,1)(1)) and (inputA(x,1)(1) <= inputA(x,2)(1)) then
					temp_inputA(x,0)(1) := inputA(x,1)(1);
 elsif (inputA(x,2)(1) <= inputA(x,1)(1)) and (inputA(x,1)(1) <= inputA(x,0)(1)) then
					temp_inputA(x,0)(1) := inputA(x,1)(1);
					
				elsif (inputA(x,1)(1) <= inputA(x,0)(1)) and (inputA(x,0)(1) <= inputA(x,2)(1)) then
					temp_inputA(x,0)(1) := inputA(x,0)(1);
 elsif (inputA(x,2)(1) <= inputA(x,0)(1)) and (inputA(x,0)(1) <= inputA(x,1)(1)) then
					temp_inputA(x,0)(1) := inputA(x,0)(1);
					
				elsif (inputA(x,0)(1) <= inputA(x,2)(1)) and (inputA(x,2)(1) <= inputA(x,1)(1)) then
					temp_inputA(x,0)(1) := inputA(x,2)(1);
 elsif (inputA(x,1)(1) <= inputA(x,2)(1)) and (inputA(x,2)(1) <= inputA(x,0)(1)) then
					temp_inputA(x,0)(1) := inputA(x,2)(1);
				else
					temp_inputA(x,0)(1) := inputA(x,1)(1);
			 end if;
 end loop; -- x
		
		 for x in 0 to 2 loop -- blue
 if (inputA(x,0)(2) <= inputA(x,1)(2)) and (inputA(x,1)(2) <= inputA(x,2)(2)) then
					temp_inputA(x,0)(2) := inputA(x,1)(2);
 elsif (inputA(x,2)(2) <= inputA(x,1)(2)) and (inputA(x,1)(2) <= inputA(x,0)(2)) then
					temp_inputA(x,0)(2) := inputA(x,1)(2);
					
				elsif (inputA(x,1)(2) <= inputA(x,0)(2)) and (inputA(x,0)(2) <= inputA(x,2)(2)) then
					temp_inputA(x,0)(2) := inputA(x,0)(2);
 elsif (inputA(x,2)(2) <= inputA(x,0)(2)) and (inputA(x,0)(2) <= inputA(x,1)(2)) then
					temp_inputA(x,0)(2) := inputA(x,0)(2);
					
				elsif (inputA(x,0)(2) <= inputA(x,2)(2)) and (inputA(x,2)(2) <= inputA(x,1)(2)) then
					temp_inputA(x,0)(2) := inputA(x,2)(2);
 elsif (inputA(x,1)(2) <= inputA(x,2)(2)) and (inputA(x,2)(2) <= inputA(x,0)(2)) then
					temp_inputA(x,0)(2) := inputA(x,2)(2);
				else
					temp_inputA(x,0)(2) := inputA(x,1)(2);
			 end if;
 end loop; -- x
		
			if (temp_inputA(1,0)(0) <= temp_inputA(0,0)(0)) and (temp_inputA(0,0)(0) <= temp_inputA(2,0)(0)) then
				tempsignal_red(7 downto 0) := temp_inputA(0,0)(0);
			elsif (temp_inputA(2,0)(0) <= temp_inputA(0,0)(0)) and (temp_inputA(0,0)(0) <= temp_inputA(1,0)(0)) then
				tempsignal_red(7 downto 0) := temp_inputA(0,0)(0);
			elsif (temp_inputA(0,0)(0) <= temp_inputA(1,0)(0)) and (temp_inputA(1,0)(0) <= temp_inputA(2,0)(0)) then
				tempsignal_red(7 downto 0) := temp_inputA(1,0)(0);
			elsif (temp_inputA(2,0)(0) <= temp_inputA(1,0)(0)) and (temp_inputA(1,0)(0) <= temp_inputA(0,0)(0)) then
				tempsignal_red(7 downto 0) := temp_inputA(1,0)(0);
			elsif (temp_inputA(0,0)(0) <= temp_inputA(2,0)(0)) and (temp_inputA(2,0)(0) <= temp_inputA(1,0)(0)) then
				tempsignal_red(7 downto 0) := temp_inputA(2,0)(0);
			elsif (temp_inputA(1,0)(0) <= temp_inputA(2,0)(0)) and (temp_inputA(2,0)(0) <= temp_inputA(0,0)(0)) then
				tempsignal_red(7 downto 0) := temp_inputA(2,0)(0);
			else
				tempsignal_red(7 downto 0) := temp_inputA(1,0)(0);
			end if;
			
			if (temp_inputA(1,0)(1) <= temp_inputA(0,0)(1)) and (temp_inputA(0,0)(1) <= temp_inputA(2,0)(1)) then
				tempsignal_green(7 downto 0) := temp_inputA(0,0)(1);
			elsif (temp_inputA(2,0)(1) <= temp_inputA(0,0)(1)) and (temp_inputA(0,0)(1) <= temp_inputA(1,0)(1)) then
				tempsignal_green(7 downto 0) := temp_inputA(0,0)(1);
			elsif (temp_inputA(0,0)(1) <= temp_inputA(1,0)(1)) and (temp_inputA(1,0)(1) <= temp_inputA(2,0)(1)) then
				tempsignal_green(7 downto 0) := temp_inputA(1,0)(1);
			elsif (temp_inputA(2,0)(1) <= temp_inputA(1,0)(1)) and (temp_inputA(1,0)(1) <= temp_inputA(0,0)(1)) then
				tempsignal_green(7 downto 0) := temp_inputA(1,0)(1);
			elsif (temp_inputA(0,0)(1) <= temp_inputA(2,0)(1)) and (temp_inputA(2,0)(1) <= temp_inputA(1,0)(1)) then
				tempsignal_green(7 downto 0) := temp_inputA(2,0)(1);
			elsif (temp_inputA(1,0)(1) <= temp_inputA(2,0)(1)) and (temp_inputA(2,0)(1) <= temp_inputA(0,0)(1)) then
				tempsignal_green(7 downto 0) := temp_inputA(2,0)(1);
			else
				tempsignal_green(7 downto 0) := temp_inputA(1,0)(1);
			end if;
				
			if (temp_inputA(1,0)(2) <= temp_inputA(0,0)(2)) and (temp_inputA(0,0)(2) <= temp_inputA(2,0)(2)) then
				tempsignal_blue(7 downto 0) := temp_inputA(0,0)(2);
			elsif (temp_inputA(2,0)(2) <= temp_inputA(0,0)(2)) and (temp_inputA(0,0)(2) <= temp_inputA(1,0)(2)) then
				tempsignal_blue(7 downto 0) := temp_inputA(0,0)(2);
			elsif (temp_inputA(0,0)(2) <= temp_inputA(1,0)(2)) and (temp_inputA(1,0)(2) <= temp_inputA(2,0)(2)) then
				tempsignal_blue(7 downto 0) := temp_inputA(1,0)(2);
			elsif (temp_inputA(2,0)(2) <= temp_inputA(1,0)(2)) and (temp_inputA(1,0)(2) <= temp_inputA(0,0)(2)) then
				tempsignal_blue(7 downto 0) := temp_inputA(1,0)(2);
			elsif (temp_inputA(0,0)(2) <= temp_inputA(2,0)(2)) and (temp_inputA(2,0)(2) <= temp_inputA(1,0)(2)) then
				tempsignal_blue(7 downto 0) := temp_inputA(2,0)(2);
			elsif (temp_inputA(1,0)(2) <= temp_inputA(2,0)(2)) and (temp_inputA(2,0)(2) <= temp_inputA(0,0)(2)) then
				tempsignal_blue(7 downto 0) := temp_inputA(2,0)(2);
			else
				tempsignal_blue(7 downto 0) := temp_inputA(1,0)(2);
			end if;

			outputC(1,1)(0) <= tempsignal_red(7 downto 0);
			outputC(1,1)(1) <= tempsignal_green(7 downto 0);
			outputC(1,1)(2) <= tempsignal_blue(7 downto 0);
		

Appendix B: sort3.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity sort3 is
port(
 a: in STD_LOGIC_VECTOR(7 downto 0);
 b: in STD_LOGIC_VECTOR(7 downto 0);
 c: in STD_LOGIC_VECTOR(7 downto 0);
 min: out STD_LOGIC_VECTOR(7 downto 0);
 median: out STD_LOGIC_VECTOR(7 downto 0);
 max: out STD_LOGIC_VECTOR(7 downto 0)
);
end sort3;

architecture s3 of sort3 is

component mux3in1out is
port(
 a: in STD_LOGIC_VECTOR(7 downto 0);
 b: in STD_LOGIC_VECTOR(7 downto 0);
 c: in STD_LOGIC_VECTOR(7 downto 0);
 sa: in STD_LOGIC;
 sb: in STD_LOGIC;
 sc: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(7 downto 0));
end component;

component comp2in3out_gate is
port(
 a: in STD_LOGIC_VECTOR(7 downto 0);
 b: in STD_LOGIC_VECTOR(7 downto 0);
 q1_a: out STD_LOGIC;
 q2_b: out STD_LOGIC;
 q3_equal: out STD_LOGIC);
end component;

component nand3 is
port(
 a: in STD_LOGIC;
 b: in STD_LOGIC;
 c: in STD_LOGIC;
 q: out STD_LOGIC);
end component;

component nand4 is
port(
 a: in STD_LOGIC;
 b: in STD_LOGIC;
 c: in STD_LOGIC;
 d: in STD_LOGIC;
 q: out STD_LOGIC);
end component;

component nand5 is
port(
 a: in STD_LOGIC;
 b: in STD_LOGIC;
 c: in STD_LOGIC;
 d: in STD_LOGIC;
 e: in STD_LOGIC;
 q: out STD_LOGIC);
end component;

component nand6 is
port(
 a: in STD_LOGIC;
 b: in STD_LOGIC;
 c: in STD_LOGIC;
 d: in STD_LOGIC;
 e: in STD_LOGIC;
 f: in STD_LOGIC;
 q: out STD_LOGIC);
end component;

signal C1A,C1B,C1EQ,C2A,C2B,C2EQ,C3A,C3B,C3EQ: STD_LOGIC;
signal a_med_rx,b_med_rx,c_med_rx,a_min_rx,b_min_rx,c_min_rx,a_max_rx,b_max_rx,c_max_rx: STD_LOGIC;
signaL s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,s11,s12,s13: STD_LOGIC;
signal pre_out: STD_LOGIC_VECTOR(7 downto 0);
begin

MAX_MUX: mux3in1out port map(a,b,c,a_max_rx,b_max_rx,c_max_rx,max);
MEDIAN_MUX: mux3in1out port map(a,b,c,a_med_rx,b_med_rx,c_med_rx,median);
MIN_MUX: mux3in1out port map(a,b,c,a_min_rx,b_min_rx,c_min_rx,min);

C1: comp2in3out_gate port map(a,b,C1A,C1B,C1EQ);
C2: comp2in3out_gate port map(b,c,C2A,C2B,C2EQ);
C3: comp2in3out_gate port map(c,a,C3A,C3B,C3EQ);

ND1: nand3 port map(C1A,C2A,C3B,s01);
ND2: nand3 port map(C1EQ,C2A,C3B,s02);
ND3: nand3 port map(C1A,C2EQ,C3B,s03);
ND4: nand3 port map(C1EQ,C2EQ,C3EQ,s04);
ND5: nand3 port map(C1A,C2B,C3B,s05);
ND6: nand3 port map(C1A,C2B,C3EQ,s06);
ND7: nand3 port map(C1B,C2A,C3B,s07);
ND8: nand3 port map(C1B,C2A,C3EQ,s08);
ND9: nand3 port map(C1B,C2A,C3A,s09);
ND10: nand3 port map(C1B,C2EQ,C3A,s10);
ND11: nand3 port map(C1A,C2B,C3A,s11);
ND12: nand3 port map(C1EQ,C2B,C3A,s12);
ND13: nand3 port map(C1B,C2B,C3A,s13);

ND_A_MED: nand4 port map(s07,s08,s11,s12,a_med_rx);
ND_B_MED: nand5 port map(s01,s02,s03,s04,s13,b_med_rx);
ND_C_MED: nand4 port map(s05,s06,s09,s10,c_med_rx);

ND_A_MAX: nand6 port map(s01,s02,s03,s04,s05,s06,a_max_rx);
ND_B_MAX: nand4 port map(s07,s08,s09,s10,b_max_rx);
ND_C_MAX: nand3 port map(s11,s12,s13,c_max_rx);

ND_A_MIN: nand3 port map(s09,s10,s13,a_min_rx);
ND_B_MIN: nand4 port map(s05,s06,s11,s12,b_min_rx);
ND_C_MIN: nand6 port map(s01,s02,s03,s04,s07,s08,c_min_rx);

[bookmark: _GoBack]end s3;
image1.png

image2.png

